MULTIFUNCTIONAL COLLABORATIVE MODELING AND ANALYSIS METHODS IN ENGINEERING SCIENCE

Jonathan B. Ransom
NASA Langley Research Center
Mail Stop 240, Hampton, VA 23681
j.b.ransom@larc.nasa.gov

FEMCI Workshop 2001 Innovative FEM Solutions to Challenging Problems May 16-17, 2001

CONVENTIONAL MODELING AND ANALYSIS OF COMPLEX SYSTEMS

- Multi-fidelity FE Modeling
- Requires months to model
- Changes expensive, time consuming and error prone
- Model often tied to discipline

Multifunctional Collaborative Methodology

- Multi-fidelity
- Multiple Methods
- Multiple Disciplines

OBJECTIVES

- Present general methodology providing capability for multifunctional modeling, analysis and solution
- Identify computational aspects and related algorithmic issues for this methodology
- Demonstrate the formulation to scalar- and vector-field applications in engineering science

KEY TERMINOLOGY

- <u>Multifunctional</u> Computational methodologies for rapid, robust solutions featuring multi-fidelity modeling and multiple methods
- Collaborative Mechanism by which two or more physical domains or methods are integrated/interfaced
- Engineering science Broad spectrum of engineering (science, mathematics, numerical analysis)
- Homogeneous modeling Same spatial modeling approach among subdomains
- Heterogéneous modeling Different spatial modeling approaches among subdomains

Example - Previous interface technology demonstrated collaborative method for homogeneous FE modeling applied to solid mechanics

MULTIFUNCTIONAL METHODOLOGY

Multifunctional Methods Concept and General Formulation

Homogeneous Modeling

Heterogeneous Modeling

FEM Model Interfacing

Non-FEM Model Interfacing

Multiple Method Interfacing

Multiple methods

Multiple Discipline Interfacing

Multi-fidelity

Multiple-domain

Multiple disciplines

Capability which Enables the Synthesis of Diverse Models

OUTLINE

- Multifunctional Formulation
 - Basic assumption
 - Method of weighted residuals for MFC approach
 - Collaborative interface treatment
 - General system of equations
- Selected Applications
- Concluding Remarks

MULTIFUNCTIONAL FORMULATION -BASIC ASSUMPTION-

Deformation, v, along the interface connecting the substructures, ? i, may be expressed as:

- T is an interpolation matrix formed using cubic splines
- q_I is a vector of interface degrees of freedom

MULTIFUNCTIONAL FORMULATION

- METHOD OF WEIGHTED RESIDUALS -

Define:
$$\overline{\overline{\mathbf{R}}} ? \overset{N_{ss}}{?} \overline{\mathbf{R}}_m ? \overset{N_{\mathrm{I}}}{?} \overline{\mathbf{R}}_{c_i^s} ? \overline{\mathbf{R}}_{c_i^p} ?? 0$$

where the orthogonalized residuals associated with:

Governing equation within the domain

$$\overline{\mathbf{R}}_m$$
 ? ${}_{?}\mathbf{F}_m\mathbf{R}_m$ d? ${}_{m}$? $\mathbf{0}$

Compatibility constraint for <u>primary variable</u> on interface boundary n_i

$$\overline{\mathbf{R}}_{\mathbf{c}_{i}^{\mathbf{p}}} ? \overset{n_{i}}{\underset{j?1}{?}} ? ? \overset{n_{i}}{\underset{j}{?}} ? \mathbf{v}_{i} ? \mathbf{u}_{j} ? \mathbf{d} ?_{\mathbf{I}} ? \mathbf{0}$$

Compatibility constraint for <u>secondary variable</u> on interface boundary

$$\overline{\mathbf{R}}_{\mathbf{c}_{i}^{\mathbf{s}}} ? \overset{n_{i}}{?}_{j?1} ?_{\mathbf{I}} \hat{\mathbf{t}}_{j} d?_{\mathbf{I}} ? \mathbf{0}$$

MULTIFUNCTIONAL FORMULATION - COLLABORATIVE INTERFACE TREATMENT -

For weight functions:

FE domains: \mathbf{F}_m ? \mathbf{N}_m

FD domains: \mathbf{F}_{m} ? ? ? x_{l} , y_{l} ? ? y_{l} ? ? ? x_{l} , y_{l} ?

Assume for each interface *i*:

$$\mathbf{u}_{j} ? \mathbf{N}_{j} \overline{\mathbf{q}}_{j}, \quad \mathbf{v}_{i} ? \mathbf{T} \mathbf{q}_{I}, \quad \hat{\mathbf{t}}_{j} ? \mathbf{S}_{j} \mathbf{a}_{j} \quad \hat{\mathbf{r}}_{i} ? \mathbf{T}, \quad \text{and } \mathbf{r}_{j} ? \mathbf{S}_{j}$$

substituted into:

$$\overline{\mathbf{R}}_{m} ? \underset{?_{m}}{?} \mathbf{F}_{m} \mathbf{R}_{m} d?_{m} ? 0$$

$$\overline{\mathbf{R}}_{c_{i}^{p}} ? \underset{j?1}{\overset{n_{i}}{?}} ??_{j} ?\mathbf{v}_{i} ? \mathbf{u}_{j} ?d?_{I} ? 0$$

$$\overline{\mathbf{R}}_{c_i^s} ? \stackrel{n_i}{?}_{j?1} ?_{\mathbf{I}} \hat{\mathbf{t}}_j d?_{\mathbf{I}} ? 0$$

MULTIFUNCTIONAL FORMULATION - GENERAL SYSTEM OF EQUATIONS -

General matrix form for multifunctional collaborative approach

where $\overline{K}_s,\overline{K}_p,\overline{K}_I^T,\overline{a}$ are dependent on fluid mechanics formulation and u is discipline-specific

Matrix characteristics:

- Sparse
- Non-positive definite
- May be unsymmetric

APPLICATIONS

- Patch Test Example Problems
- Torsion of Prismatic Bar
- Heat Conduction Problem
- Potential Flow Problem
- Plane Stress Problem
- Plane Flow Problem
- Boeing Crown Panel
- Douglas Stub-Box

HEAT CONDUCTION PROBLEM

PLANE STRESS PROBLEM

Plate with Central Cutout

E=10,000 ksi ?=0.3 h=0.1 in.

Geometric Configuration

Two Configurations:

Infinite plate:

$$2a/R_0 = 40$$

$$2b/R_0 = 20$$

Finite-width plate:

$$2a/R_0 = 4$$

$$2b/R_0 = 2$$

STRESS RESULTANT DISTRIBUTION FOR FINITE-WIDTH PLATE

Spatial Modeling

Stress Resultant Contours

$$A_{net}$$
 ? ?2b ? $2R_0$?h ? $2bh_?^{?1}$? $\frac{R_0}{b}_?^{?}$; ? x_{nom} ? $\frac{P}{A_{net}}$; N_x_{nom} ? ?? x_{nom} ? ? x_{nom} h

COLLABORATIVE METHODOLOGY DEMONSTRATED ON BOEING CROWN PANEL

COLLABORATIVE METHODOLOGY DEMONSTRATED ON BOEING CROWN PANEL

APPLICATION OF COLLABORATIVE METHODOLOGY IN NONLINEAR ANALYSIS OF WING STUB BOX

Experimental Setup

Tip load

Local Model of Nonlinear Region

Deformed Shape

Nonlinearly Deformed Unstiffened Bay

SUMMARY

- Results presented for patch test, scalarfield, and vector-field problems
- Results for all problems and multifunctional approaches in overall good agreement
- Finite element solutions more accurate than finite difference solutions for discretizations considered
- Results with heterogeneous modeling not as accurate as homogeneous modeling

CONCLUSIONS

- Multifunctional collaborative methodologies and analysis procedures formulated and placed on solid mathematical foundation
 - Scalar-field and vector-field problems
 - Homogeneous and heterogeneous modeling
- Collaborative role of modeling approaches has been illustrated
- Capabilities demonstrated on benchmark problems and large scale applications
- Computational challenges overcome
- Application of FD method limits general use